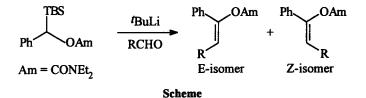


PII: S0040-4039(97)00222-0

The Peterson Olefination of Benzyl Carbamates¹


L. Frances van Staden, Birgit Bartels-Rahm and Neville D. Emslie*

Department of Chemistry, University of Natal, Private Bag X01, Scottsville, 3209, South Africa

Abstract: An efficient synthesis of substituted vinyl carbamates, from benzyl carbamates via the Peterson olefination is described. © 1997 Published by Elsevier Science Ltd. All rights reserved.

The Peterson olefination is a useful carbon-carbon double bond forming reaction analogous to the Wittig reaction. The two major drawbacks of this reaction are considered to be the difficulty in obtaining the α -silyl carbanion and its low stereoselectivity.² As a consequence of this, the Peterson olefination has found limited application in synthesis.

Our continued investigation of the reactivity of benzyl carbamates³ has included the investigation of its application in the Peterson olefination. The olefin products were isolated directly on reaction of the α -silylated benzyl carbamate⁴ with carbonyl compounds. The inherent stability of the benzylic anion, which is enhanced by the silyl moiety, simplifies the anion formation in benzylsilane as opposed to alkylsilane substrates.⁵ The added advantage of the α -silylated benzyl carbamate is the additional stabilisation of this α -silylbenzyl carbanion by the carbamate functionality. We are therefore able to isolate the vinyl carbamates (Scheme) in moderate to good yields with relatively high stereoselectivity (Table).⁶ Although the preparation of vinyl carbamates⁷ via the Peterson olefination is novel, similar methodology has been employed for the synthesis of the related vinyl ethers.⁸

This reaction (Scheme) gives good Z-selectivity (Table, entries 1, 3, 4, 5, 6 and 9), when the 'butyldimethylsilyl carbamate is used, in comparison to the near 1:1 ratios obtained previously for the

^bbutyldimethylsilyl benzyl substrate.² This Z-selectivity is in accordance with the stepwise mechanistic model proposed by Bassindale and co-workers.⁹ Optimisation of the reaction conditions using piperonal as the electrophile, indicates that better stereoselectivity is obtained in ether than in THF (Table, entries 1 and 2).

	Electrophile*	solvent	time/hrs	yield [•] /%	E:Z ^c
1	piperonal	Et ₂ O	5	76 ^{d,e}	7:93
2	piperonal	THF	3	79 ^e	39:61
3	2-quinolinecarboxaldehyde	Et ₂ O	5	80 ^d	20:80
4	2-thiophenecarboxaldehyde	Et ₂ O	5	78 ^d	11:89
5	2-pyridinecarboxaldehyde	Et ₂ O	5	65 ^{d,f}	23:77
6	furfural	Et ₂ O	5	70 ^d	17:83
7	benzophenone	Et ₂ O	5	42°	n/a
8	benzophenone	Et ₂ O	5	82 ^d	n/a
9	benzaldehyde	Et ₂ O	5	82 ^d	9:91

Table: Results of the Peterson olefination.

a 2 eq. were used, except for the quinoline aldehydes, when 1.5 eq. were found to give the same yield. b Isolated yields. c Ratios determined by NMR rather than GC since some of the isomers were found to interconvert in the injection port (220°C). d Reaction was allowed to proceed at room temperature after the base and electrophile had been added at -78°C. e Reaction carried out at -78°C. f 1.0 eq. ^tBuLi used.

Allowing the reaction to warm to room temperature does not adversely affect the selectivity (Table, entry 1), but enhances the yield of the reaction (Table, entries 7 and 8).

Acknowledgements: The Authors wish to thank the University of Natal and The Foundation for Research Development (FRD) for financial assistance.

References

- 1 Presented in part at the Belgian Organic Synthesis Symposium, Gent, July 1996.
- 2. Bassindale, A. R.; Ellis, R. J.; Taylor, P. G. Tetrahedron Lett. 1984, 25, 2705-2708.
- 3. Yoell, D. K. Unpublished results.
- 4. Mason, P. H.; Yoell, D. K.; Van Staden, L. F.; Emslie, N. D. Synth. Commun. 1995, 3347-3350.
- 5. Ager, D. G. Synthesis. 1984, 384-398.
- The 1-'butyldimethylsilyl-1-N,N-diethylcarbamoyloxy-1-phenylmethane was treated with 'BuLi (1.2 eq.) followed by the addition of the carbonyl compound at -78°C.
- 7. Hoppe, D.; Kramer, T.; Schwark, J.-R.; Zschage, O. Pure Appl. Chem. 1990, 62, 1999-200.
- Ager, D. G. Org. React. 1990, 38, 1-224. Kanemasa, S.; Tanaka, J.; Nagahama, H.; Tsuge, O. Bull. Chem. Soc. Jpn. 1985, 58, 3385-3386.
- Bessindale, A. R.; Ellis, R. J.; Lau, J. C.-Y.; Taylor, P. G. J. Chem. Soc., Perkin Trans. 2. 1986, 593-597.

(Received in UK 20 December 1996; revised 27 January 1997; accepted 31 January 1997)